Winemaking Math: Calculate your Way to Better Wine – Advanced Winemaking

Chik Brenneman Baker Family Wines West Sacramento, CA

What's The Big Deal???

- Helps you interpret what goes into an analytical test that you performed, or received a result from
- Allows you to interpret your analytical results and properly calculate planned additions

Calculations – Metric versus US

LIQUID VOLUME MEASUREMENT CONVERSION CHART				
CHEFLOLASKITCHEN.COM				
TEASPOON Tsp.	TABLESPOON Tbsp.	CUP C	MILLILITER ml	FLUID OUNCES OZ
3 TSP.	1 TBSP.	1/16C	15ML	1/2FL. OZ
6 TSP.	2 TBSP.	1/8C	30ML	1FL. OZ
12 TSP.	4 TBSP.	1/4C	59ML	2FL. OZ
16 TSP.	5.3 TBSP.	1/3C	79ML	2/3FL.OZ
24 TSP.	8 TBSP.	1/2C	118ML	4FL. OZ
32 TSP.	10.6 TBSP.	2/3C	158ML	51/3FL. OZ
36 TSP.	12 TBSP.	3/4C	177ML	6FL. OZ
48 TSP.	16 TBSP.	1C	237ML	8FL. OZ
96 TSP.	32 TBSP.	2C	473ML	16FL. OZ

Basic Conversions

- Common US nomenclature → # per 1000 gallons
- Common SI nomenclature → g/hL (100 Liters)
- 1 # = 454 Grams
- 1 gallon = 3.785 L
- 2#/1000 gal = 25 g/hL = 1 g/gallon
- <u>http://wineserver.ucdavis.edu/industry/enology/methods_and_techniques/techniques/techniques/unit_conversions.html</u>

Learn to use the metric systems

- Understand basic conversions
 - Gallons to Liter 1 gal = 3.785 Liter
 - Ounces to milliliters (Liquid) 1 oz = 30 mL
 - Ounces to grams (Dry) 1 oz = 28 g
 - Work within your comfortability
 - Only negative to the metric system...
 - Your calculation would result in a factor of '10' discrepancy

Tools

- Measuring tape in the metric system
 - Desired units in centimeters (cm)
- Laboratory Vessels
 - Desired units in milliliters (mL)
 - Pipettes, graduated cylinders, flasks, beakers
- Kitchen top loading scale
 - Desired units in grams (g)
- Calculator

Basics of an equation involving additions

- (Desired) Concentration X Volume
- Preferred units
 - Grams per L
- Juice/Wine versus Musts
 - Solids adjustment for musts
 - Winemaker's choice (0.7-0.9) depending on juiciness

Basics...Determining your Volume?

- Understand what you are trying to measure
 - Cylinder
 - $\pi x (radius)^2 x height (\pi(r)^2 h)$ or alternatively $\pi x ((diameter)^2/4) x height [\pi(d^2/4)h]$

- Rectangle
 - Length x Width x Height (L x W x H)

Basics...Determining your Volume?

- Length Measurements and Volume???Why metric???
- Centimeter X Centimeter X Centimeter = cm³ = 1 cc
 - [π(d²/4)h]
 - (L x W x H)
- 1 cc = 1 mL Δ 1000 cm³ = 1000 mL = 1 Liter (L)
 - Factors of 10X
 - 100 L = 1 hectoliter (hL)

- Variable volumes do not have to be estimated
 - Do this ahead of time
 - Mark your vessels
 - Make a note in your log

 Pir
 Ei
 21
 21
 25
 25
 25
 Ei
 25
 10
 11
 12
 13
 14

 No
 10
 11
 12
 1
 31
 4
 37
 38
 38
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36
 36</

Basics...Determining your Mass

- Top Loading balance (General Purpose)
 - Range 0.1 to 2500 g (0.0001 2.5 kg)
 - +/- 0.1 gram (g)
 - \$ to \$\$
- Analytical Balance (Standardizing Reagents)
 - Range typically 0.000 to 25.000 g
 - +/- 0.001 to 0.00001 gram (g)
 - \$\$ to \$\$\$ to \$\$\$\$

Basics...Putting Together the Puzzle

- Concentration times Volume
 - Grams per Hectoliter (g/hL)
 - generally found cellar chemical calculations
 - Grams per Liter (g/ml)
 - Routinely part of an analytical measurement result
 - e.g. Titratable Acidity
 - Milligrams per Liter (mg/L)
 - Routinely part of an analytical measurement result
 - e.g. Sulfur Dioxide, Malic/Lactic acid measurements

Calculations Specific To Winemaking

- Sulfur dioxide additions**
- Nutrient additions**
- Acid additions
- De-acidification
- Yeasting
- Fining agent additions
- Delle Unit Calculations
- Water Dilution
- Chaptalization Not today...

Wise Words...

- Carpentry Analogy
 - Measure Twice, Cut Once!!!
- There can be some wiggle room, with a notable exception
 - Sulfur Dioxide!

Calculating SO₂ Additions

- How much do you want to add?
- What is the volume of juice/wine?
- Liters and Gallons
- If a little is good, than is a lot....Better? NO!!!
 - Anthocyanin binding and wine bleaching
 - Sensory thresholds of SO₂

Sulfur Dioxide Calculation

- Use of Potassium Metabisulfite is the most predictable method
 - Powder Salt of Sulfur Dioxide 57.6% SO₂
 - Inodose Potassium metabisulfite tablets that release 5 g \pm 0.5 SO₂.
- Need to treat differently doesn't seem practical for homewinemakers
- Importance of regular testing

Calculating SO₂ Additions

- KMBS comes as a powder, it is a salt of sulfur dioxide.
- 57% is 'active'
- Example: add 50 ppm to 100 L
 - (Desired addition (g/L)* volume (L))/0.576= g KMBS
 - 50 ppm = 50 mg/L = 0.050 g/L
 - <u>0.050 * 100</u> = 8.6 g KMBS 0.576

How to add SO₂

- KMBS
 - Diluted with distilled water
 - Use of a stock solution (10%)
 - <u>www.winemakermag.com</u>
 - 10% (v/v) = 10 g/100 mL = 0.10 g/mL
 - 8.6 g /0.10 g/ml = 86 mL

Nutrient Additions

- Di-Ammonium Phosphate (21 % N)
- Go-Ferm (3 % N)
- Fermaid K (Lallemand) (13 % N)
- Superfood (Gusmer) (8 % N)
- Example: Fermaid K at 13 % N
 - 1 g/L of FK = 1000 mg/L (1000 ppm)
 - Therefore 13% of 1000 mg FK = 130 mg/L N

=Continuing

• Target 250 mg N (Using Fermaid K (FK))

•
$$\frac{250 mg N}{L \ liquid} \times \frac{1 \ g \ FK}{130 \ mg \ N} = \frac{2 \ g \ FK}{L \ liquid}$$

• In 5 gallons

•
$$\frac{2 g FK}{L \ liquid} \times \frac{3.785 \ L \ liquid}{1 \ Gal \ liquid} \times 5 \ gal \ liquid = 38 \ g \ FK$$

Other Nutrients

- Di-Ammonium Phosphate (DAP)
 - 21 % Nitrogen
- Sometimes more effective in feeding after fermentation has started
- 1 g/gal = 50 mg Nitrogen

Calculations Specific To Winemaking

- Sulfur dioxide additions**
- Nutrient additions**
- Acid additions
- Yeasting
- Fining agent additions
- De-acidification
- Delle Unit Calculations

Follow the Concentration X Volume principle

Concentration X Volume

- Ex: You want to add 1.5 g/L of 'compound Z' to 5 gallons
 - Convert gallons to liters
 - 5 gal x <u>3.785 L</u> = 19 L
 - 19 L x <u>1.5 g</u> = 28.5 g of 'compound Z'

How Much Water to Add?

• $M_1V_1 = M_2V_2$ $\rightarrow V_2 = V_1 + x$

Rearranging

- $M_1V_1 = M_2(V_1 + x)$
- Where x = Volume of water to add to attain M₂

Another Method - Simplified

- Must/Juice at 27°B
- Target
 - 24°B,
 - Adjustments necessary:
 - $27^{\circ} 24^{\circ} = 3^{\circ}$
 - 3°/27° = 0.11 or 11%
 - In 100 L , you juice, you will want to add 11 L
- For must additions, reduce total volume by 20%
 - In this case, use 80 L

Simple De-acidification

Agent(g) = ((current TA - Target TA) * vol) * (MW agent / MW tartaric acid)

Where: MW = molecular mass 150.087 = MW of tartaric acid 100.087 = MW of calcium carbonate 138.2055 = MW of potassium carbonate 100.11 = MW of potassium bicarbonate

Wine Stability and Delle Units

- The unit of calculation for microbial stability in sweet wines
- DU (Delle Units) = % sugar (w/v) + 4.5 × % alcohol (v/v)
- Target unit range 75 85

Concluding

- Calculators are available on-line
 - Wine Business Monthly
 <u>https://www.winebusiness.com/calculator/winemaking/</u>
 - VinoLab (Croatia) https://www.vinolab.hr/vinolab/en1
 - Intent here was to show what goes into the calculators and getting a feel for how reliable they are.
 - Remember to measure twice and cut once no matter how you perform you calculations