Managing Nutrition of Juice and Wine – General Winemaking

Chik Brenneman Baker Family Wines

Objectives

- What are yeasts?
- Assessment of the conditions to promote growth
- What goes into the assessment?
- Amelioration/Supplements
- Methods of addition
- Monitoring
- Close out

What Are Yeasts?

- Single Celled Fungi
- Reproduce by budding
- Under anaerobic conditions will produce EtOH and CO2
- Used in food and beverage manufacturing
- Need favorable conditions for growth
- Link to Louis Pasteur

Legacy of Louis Pasteur

Assessment of Conditions

- Chemoorganotrouphs
- Carbon source is generally hexose sugars (Glu/Fru)
 - Pentoses, alcohols, and organic acids in some cases
- Facultative Aerobes
- Optimal temperature ranges
- ID though selected media
- Opportunistic when the growth medium favors them

Assessment of Growth Conditions

- Nitrogen
- Vitamins
- Minerals
- Survival factors
- What is Yeast Assimilable Nitrogen
 - Free Amino Nitrogen (FAN)
 - Ammonia (NH₃)
 - Ammonium (NH₄⁺)

YAN is Variable

- Variety, Rootstock, soils and viticultural practices
- Yan vs nitrogen in juice/wine
- Most in the juice and skins
- A higher percentage of the total is left in the pomace
- Proline
- Measurement requires a sample to the local wine lab!

Nutrient Additions: How much and when?

- 0.4-1.6 mg N / gram sugar
 - Brix g sugar/100 g solution
 - 1.6 mg N *250 g/L = 400 mg N/L
 - 100-400 mg/L is accepted range
- Desire a healthy Nitrogen status at beginning of fermentation
- Additions generally dependent on yeast strain requirements
 - Yeast characteristic charts will list as low, medium, or high
- Additions at the time of inoculation and then when 1/3 sugar depletion

Nutrients

- Nitrogen
 - Amino Acids
 - Inorganic Nitrogen
 - Proprietary Formulations
 Scottlabs (Lallemand)
 Gusmer (CHR Hansen)
 Laffort

Nutrient Additions

- Di-Ammonium Phosphate (21 % N)
- Go-Ferm (3 % N)
- Fermaid K (Lallemand) (13 % N)
- Superfood (Gusmer) (8 % N)
- Example: Fermaid K at 13 % N
 - 1 g/L of FK = 1000 mg/L (1000 ppm)
 - Therefore 13% of 1000 mg FK = 130 mg/L N

=Continuing

• Target 250 mg N (Using Fermaid K (FK))

•
$$\frac{250 mg N}{L \ liquid} \times \frac{1 \ g \ FK}{130 \ mg \ N} = \frac{2 \ g \ FK}{L \ liquid}$$

• In 5 gallons

• $\frac{2 g FK}{L \ liquid} \times \frac{3.785 \ L \ liquid}{1 \ Gal \ liquid} \times 5 \ gal \ liquid = 38 \ g \ FK$

Other Nutrients

• Di-Ammonium Phosphate (DAP)

- 21 % Nitrogen
- Sometimes more effective in feeding after fermentation has started
- Fermaid K has DAP in it.
- 1 g/gal = 50 mg Nitrogen

Yeast Hydration

- Follow manufacturer's guidelines (Go-ferm or equivalent)
- Heat water to 100-104°F (38-40°C)
- Typical inoculum 2#/1000 gallons (25 g/hL)
 - Initial target of 3-4 million cells/mL
- Hydrate the yeast
- Wait 15-30 minutes
- Inoculation temperature should not be greater than 18°F (10°C) between the wort and the inoculum
- High Brix requires a culture build-up/

Yeast Hydration

Proprietary hydration techniques are helpful
High brix musts require modifications

Ice Wine Protocols are helpful
Higher osmotic stress

Successful Fermentation – Other Factors

- Temperature Control
- Controlled Oxygen Exposure
- Clean Fruit
- Winemaker's Attention

Monitoring

Brix	% sugar
Alcohol	Ethyl alcohol,
the second se	EtOH, ethanol
Refractometer	Measures
and the second	Refractive Index
	of JUICE
Hydrometer -	Measures Density
2	of fermenting
	JUICE

Hydrometer (Left) Refractometer

(D:

Concluding

- It's always best to die with a dollar in your pocket!!!
- Careful attention to your additions are important!
- Yeast are made happy not just with nutrients
- Sound cellar practices
- Reduce the possibilities of anything left for the heirs
- Listen to your yeast and talk back to them!